Aqua mediated SnO2 nanoparticles: A recyclable and benign catalyst for the synthesis of Quinoxalines

Authors

  • Farideh Akbari Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
Abstract:

An efficient and mild synthesis of quinoxalines in cludingcyclo-condensation of 1, 2-phenylenediamine and 1, 2-diketonesin the presence of1mol% catalytic amount of SnO2 nanoparticles (1 mol%) in water at room temperature is established. On the whole, this study introduced at this point is substantial in terms of using water as solvent, low reaction time (5 to 10 minutes), high yields of products (85-88%), reusability of catalyst (three cycles), eco-friendliness, effortlessness of performance and it displays along the line of green chemistry.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Silica bonded S-sulfonic acid: a recyclable catalyst for the synthesis of quinoxalines at room temperature.

The reaction of 3-mercaptopropylsilica (MPS) and chlorosulfonic acid in chloroform afforded silica bonded S-sulfonic acid (SBSSA), which was used as a catalyst for the room temperature synthesis of quinoxaline derivatives from 1,2-diamino compounds and 1,2-dicarbonyl compounds. The catalyst could be recycled and reused several times without any loss of efficiency.

full text

Fe3O4@silica sulfuric acid nanoparticles as a potent and recyclable solid acid catalyst for the synthesis of indole derivatives

Fe3O4 magnetic nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+ in aqueous NaOH. Then silica was coated on the obtained nanoparticles and the whole composite was functionalized with chlorosulfonic acid in CH2Cl2. The obtained nanocomposite (Fe3O4@SiO2-SO3H) was characterized by FT-IR, VSM and XRD techniques and was used as an efficient catalyst in condensation reaction of ind...

full text

ZrOCl2.8H2O@nano SiO2: a green and recyclable catalyst for the synthesis of benzimidazoles

ZrOCl2.8H2O@nano SiO2 has been synthesized for the first time via a simple procedure and characterized by SEM (scanning electron microscopy), FT-IR, and EDX (energy-dispersive X-ray) techniques. The efficiency of the prepared nanostructure has been explored for the synthesis of benzimidazoles via the condensation reaction of orthoesters and diamines at 60 °C under solvent-free conditions. The s...

full text

CdO nanoparticles as an efficient, mild and recyclable catalyst for the synthesis of 2-aryl benzoxazole derivatives by grinding method

CdO nanoparticles efficiently catalyzes the condensation of aromatic aldehydes with 2-aminophenol at room temperature to afford 2-aryl benzoxazole derivatives by grinding method. The reactions proceed under heterogeneous and mild conditions to provide 2-aryl benzoxazoles in excellent yields (87-97 %) with high purity under solvent free condition. The reaction requires short time (5-23 minutes) ...

full text

CdO nanoparticles as an efficient, mild and recyclable catalyst for the synthesis of 2-aryl benzoxazole derivatives by grinding method

CdO nanoparticles efficiently catalyzes the condensation of aromatic aldehydes with 2-aminophenol at room temperature to afford 2-aryl benzoxazole derivatives by grinding method. The reactions proceed under heterogeneous and mild conditions to provide 2-aryl benzoxazoles in excellent yields (87-97 %) with high purity under solvent free condition. The reaction requires short time (5-23 minutes) ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  44- 51

publication date 2021-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023